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1

Definitions and examples

1.1 Definitions

A Banach algebra is first of all an algebra. We start with an algebra A and
put a topology on A to make the algebraic operations continuous – in fact, the
topology is given by a norm.

Definition 1.1.1 Let E be a linear space. A norm on E is a map ‖ · ‖ : E → R

such that:

(i) ‖x‖ ≥ 0 (x ∈ E) ; ‖x‖ = 0 if and only if x = 0 ;
(ii) ‖αx‖ = |α| ‖x‖ (α ∈ C, x ∈ E) ;

(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ (x, y ∈ E) .

Then (E, ‖ · ‖) is a normed space. It is a Banach space if every Cauchy sequence
converges, i.e., if ‖ · ‖ is complete.

Definition 1.1.2 Let A be an algebra. An algebra norm on A is a map ‖ · ‖ :
A → R such that (A, ‖ · ‖) is a normed space, and, further:

(iv) ‖ab‖ ≤ ‖a‖ ‖b‖ (a, b ∈ A) .

The normed algebra (A, ‖ · ‖) is a Banach algebra if ‖ · ‖ is a complete norm.

In Chapters 1–7, we shall usually suppose that a Banach algebra A is unital:
this means that A has an identity eA and that ‖eA‖ = 1. Let A be a Banach
algebra with identity. Then, by moving to an equivalent norm, we may suppose
that A is unital. It is easy to check that, for each normed algebra A, the map
(a, b) �→ ab, A × A → A, is continuous.

H. G. Dales, P. Aiena, J. Eschmeier, K. B. Laursen, and G. A. Willis, Introduction to Banach
Algebras, Operators, and Harmonic Analysis. Published by Cambridge University Press.
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4 Part I Banach algebras, H. Garth Dales

1.2 Examples

Let us give some elementary examples.
(i) Let S be any non-empty set. Then C

S is the set of functions from S into
C. Define pointwise algebraic operations by

(α f + βg)(s) = α f (s) + βg(s) ,

( f g)(s) = f (s)g(s) ,

1(s) = 1 ,

for each s ∈ S, each f, g ∈ C
S , and each α, β ∈ C. Then C

S is a commutative,
unital algebra. We write �∞(S) for the subset of bounded functions on S, and
define the uniform norm | · |S on S by

| f |S = sup{| f (s)| : s ∈ S} ( f ∈ �∞(S)) .

Check that (�∞(S), | · |S) is a unital Banach algebra.
(ii) Let X be a topological space (e.g., think of X = R). We write C(X )

for the algebra of all continuous functions on X , and Cb(X ) for the algebra
of bounded, continuous functions on X . Check that (Cb(X ), | · |X ) is a unital
Banach algebra.

Now take � to be a compact space (e.g., � = I = [0, 1]). Then we have
Cb(�) = C(�), and so (C(�), | · |�) is a unital Banach algebra. This is a very
important example.

(iii) Let D = {z ∈ C : |z| < 1}, the open unit disc. The disc algebra is

A(D) = { f ∈ C(D) : f is analytic on D} .

Check that A(D) is a unital Banach algebra. (You just have to show that A(D)
is closed in C(D): why is this?)

Each f ∈ A(D) has a Taylor expansion about the origin:

f =
∞∑

n=0

αn Zn =
∞∑

n=0

f (n)(0)Zn

n!
.

Here Z is the coordinate functional, so that Z : z �→ z on C. Some functions
in A(D) have the further property that

∞∑
n=0

|αn| < ∞ .
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(Are there any functions f in A(D) without this property?) The subset of func-
tions with this extra property is called A+(D). Check that A+(D) is a unital
Banach algebra for the norm ‖ · ‖1, where

‖ f ‖1 =
∞∑

n=0

|αn|
(

f =
∞∑

n=0

αn Zn

)
.

(iv) Let X be a compact set in the space C
n . Then P(X ) is the family of func-

tions that are the uniform limits on X of the restrictions to X of the polynomials
(in n-variables). Check that (P(X ), | · |X ) is a unital Banach algebra. In fact,
A(D) = P(D). We shall also be interested in P(T), where T = {z ∈ C : |z| = 1}
is the unit circle.

(v) Let X be a compact set in the complex plane C (or in C
n). Then A(X ) is the

closed subalgebra of (C(X ), | · |X ) consisting of the functions which are analytic
on the interior of X, int X . Clearly A(X ) = C(X ) if and only if int X = ∅. Also
R(X ) is the family of functions on X which are the uniform limits on X of the
restrictions to X of the rational functions: these are functions of the form p/q,
where p and q are polynomials and 0 /∈ q(X ). Clearly we have

P(X ) ⊂ R(X ) ⊂ A(X ) ⊂ C(X ) .

The question of the equality of various of these algebras encapsulates much of
the classical theory of approximation.

(vi) Let n ∈ N. Then C (n)(I) consists of the functions f on I such that f has
n derivatives on I and f (n) ∈ C(I). Check that C (n)(I) is a Banach algebra for
the pointwise operations and the norm

‖ f ‖n =
n∑

k=0

1

k!
| f (k)|I ( f ∈ C (n)(I)) .

(vii) Let E and F be linear spaces. Then L(E, F) is the collection of all
linear maps from E to F ; it is itself a linear space for the standard operations.

Now let E and F be Banach spaces. ThenB(E, F) is the family of all bounded
(i.e., continuous) linear operators from E to F ; it is a subspace of L(E, F) and
B(E, F) is itself a Banach space for the operator norm given by

‖T ‖ = sup{‖T x‖ : x ∈ E, ‖x‖ ≤ 1} .

We writeL(E) andB(E) forL(E, E) andB(E, E), respectively. The product
of two operators S and T in L(E) is given by composition:

(ST )(x) = (S ◦ T )(x) = S(T x) (x ∈ E) .
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Then trivially ‖ST ‖ ≤ ‖S‖ ‖T ‖ (S, T ∈ B(E)), and (B(E), ‖ · ‖) is a unital
Banach algebra; the identity of B(E) is the identity operator IE . This is our first
non-commutative example.

For example, let E be the finite-dimensional space C
n (say with the Euclidean

norm ‖ · ‖2). Then L(E) = B(E) is just the algebra Mn = Mn(C) of all n × n
matrices over C (with the usual identifications).

(viii) The algebra C[[X ]] of formal power series in one variable consists of
sequences

(αn : n = 0, 1, 2, . . . ) ,

where αn ∈ C, with coordinatewise linear operations and the product

(αr )(βs) = (γn) ,

where γn = ∑
r+s=n αrβs . It helps to think of elements of C[[X ]] as formal

series of the form

∞∑
n=0

αn Xn ,

with the product suggested by the symbolism. This algebra contains as a sub-
algebra the algebra C[X ] of polynomials in one variable – these polynomials
correspond to the sequences (αn) that are eventually zero.

A weight on Z
+ is a function ω : Z

+ → R
+ \ {0} such that ω(0) = 1 and

ω(m + n) ≤ ω(m)ω(n) (m, n ∈ Z
+) .

Check that ωn = e−n and ωn = e−n2
define weights on Z

+. For such a weight
ω, define

� 1(ω) =
{

(αn) ∈ C[[X ]] : ‖α‖ω =
∞∑

n=0

|αn| ωn < ∞
}

.

Check that � 1(ω) is a subalgebra of C[[X ]], and that (� 1(ω), ‖ · ‖ω) is a com-
mutative, unital Banach algebra.

(viii) Let G be a group, and let

� 1(G) =
{

f ∈ C
G : ‖ f ‖1 =

∑
s∈G

| f (s)| < ∞
}

.
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Then (� 1(G), ‖ · ‖1) is a Banach space. We can think of an element of � 1(G) as∑
s∈G

αsδs ,

where
∑ |αs | < ∞; here δs(s) = 1 and δs(t) = 0 (t �= s).

We define a product on � 1(G) that is not the pointwise product; it is denoted
by � and is sometimes called convolution multiplication. In this multiplication,

δs � δt = δst (s, t ∈ G) ,

where st is the product in G. (Actually this formula defines the product.) Thus

( f � g)(t) =
∑

{ f (r )g(s) : rs = t} (t ∈ G) . (1.2.1)

Check that � 1(G) is a unital Banach algebra for this product and the norm ‖ · ‖1.
It is commutative if and only if G is an abelian group. Special case: take G = Z,
a group with respect to addition.

(ix) (Strictly, this example needs the theory of the Lebesgue integral on R.)
The Banach space L 1(R) has the norm ‖ · ‖1 given by

‖ f ‖1 =
∫ ∞

−∞
| f (t)| dt .

For functions f, g ∈ L 1(R), define their convolution product f � g by

( f � g)(t) =
∫ ∞

−∞
f (t − s)g(s)ds (t ∈ R) .

Integration theory shows that f � g is defined almost everywhere (a.e.) and
that f � g gives an element of L 1(R); further, ‖ f � g‖1 ≤ ‖ f ‖1 ‖g‖1, and so
we obtain a commutative Banach algebra (which does not have an identity).

This example is central to the theory of Fourier transforms.
(x) Let U be a non-empty, open set in C (or in C

n). Then H (U ) denotes the
set of analytic (or holomorphic) functions on U . Clearly H (U ) is an algebra for
the pointwise operations. However the algebra H (U ) is not a Banach algebra.
For each compact subset K of U , define

pK ( f ) = | f |K ( f ∈ H (U )) .

Then each pK is an algebra seminorm on H (U ). The space H (U ) is a Fréchet
space with respect to the family of these seminorms; in this topology, fn → f
if and only if ( fn) converges to f uniformly on compact subsets of U . The
algebra is a Fréchet algebra because pK ( f g) ≤ pK ( f )pK (g) in each case.
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A related algebra is H∞(U ), the algebra of bounded analytic functions on
U . Check that this algebra is a Banach algebra with respect to the uniform norm
| · |U .

1.3 Philosophy of why we study Banach algebras

There are several reasons why we study Banach algebras. They:

� cover many examples;
� have an abstract approach that leads to clear, quick proofs and new insights;
� blend algebra and analysis;
� have beautiful results on intrinsic structure.

1.4 Basic properties

We begin our study of general Banach algebras by considering invertible ele-
ments in such algebras.

Definition 1.4.1 Let A be a unital algebra. An element a ∈ A is invertible if
there exists an element b ∈ A with ab = ba = eA. The element b is unique; it
is called the inverse of a, and written a−1. The set of invertible elements of A
is denoted by InvA.

Check that a, b ∈ InvA ⇒ ab ∈ InvA and (ab)−1 = b−1a−1.
Now let (A, ‖ · ‖) be a unital Banach algebra. Check that, for each a ∈ A, we

have

lim
n→∞ ‖an‖1/n = inf{‖an‖1/n : n ∈ N} ≤ ‖a‖ .

Theorem 1.4.2 Let (A, ‖ · ‖) be a unital Banach algebra.

(i) Suppose that a ∈ A and lim ‖an‖1/n < 1. Then eA − a ∈ InvA.
(ii) InvA ⊃ {b ∈ A : ‖eA − b‖ < 1}.

(iii) InvA is an open subset of A.
(iv) The map a �→ a−1, InvA → InvA, is continuous.

Proof (i) The series eA + ∑∞
n=1 an converges to (eA − a)−1.

(ii) This is immediate from (i).
(iii) Take a ∈ InvA, and then take b ∈ A with ‖b‖ < ‖a−1‖−1. Note that

a − b = a(eA − a−1b) and ‖a−1b‖ < 1. By (i), eA − a−1b ∈ InvA. Hence
a − b ∈ InvA.
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(iv) Exercise: use the inequality that

‖b−1 − a−1‖ ≤ 2‖a−1‖2‖b − a‖

whenever a, b ∈ InvA with ‖b − a‖ ≤ 1/2‖a−1‖. �

1.5 Exercises

1. Check the details of the examples.
2. Prove Theorem 1.4.2(iv).
3. Identify InvA for as many as possible of the examples A given in §1.2. (Easy

for A = C(�), A = A(D), A = H (U ), A = B(E); harder for the algebra
A = A+(D); not possible in general for � 1(G).) Show that Inv C[[X ]] =
{(αn) : α0 �= 0}.

4. For f ∈ L1(T) (in particular for f ∈ C(T)), the Fourier coefficients are

f̂ (k) = 1

2π

∫ π

−π

f (eiθ )e−ikθdθ (k ∈ Z) .

Let sn(θ ) = ∑+n
−n f̂ (k)eikθ and set

σn( f ) = 1

n + 1
(s0 + · · · + sn) .

Then Féjer’s theorem says that: for each f ∈ C(T), σn( f ) → f uniformly
on T.

Deduce that the following are equivalent for f ∈ C(T) :
(a) f ∈ P(T) ;
(b) f = F | T for some F ∈ A(D) ;
(c) f̂ (−k) = 0 (k ∈ N) .

We can now identify A(D) with P(T) (why?), and regard A(D) as a closed
subalgebra of C(T) – if we should wish to do this!

5. Let

W (T) = { f ∈ C(T) : ‖ f ‖1 =
∞∑

k=−∞
| f̂ (k)| < ∞} .

Check that (W (T), ‖ · ‖1) is a commutative, unital Banach algebra (for the
pointwise operations). Check that the map

∞∑
n=−∞

αnδn �→
∞∑

n=−∞
αn Zn, � 1(Z) → W (T) ,
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is an isometric isomorphism. (W stands for N. Wiener, who was the first to
study these algebras.)

6. Let L1(I) be the Banach space of (equivalence classes of) integrable functions
on I, with the norm

‖ f ‖1 =
∫ 1

0
| f (t)| dt ( f ∈ L1(I)) .

For f, g ∈ L1(I), define f � g by

( f � g)(t) =
∫ t

0
f (t − s)g(s) ds (t ∈ I) .

Show that L1(I) is a Banach algebra for this product. It is called the Volterra
algebra, and is denoted by V .

Set u(t) = 1 (t ∈ I), so that

(u � f )(t) =
∫ t

0
f (s) ds .

Calculate u�n and ‖u�n‖1, where u�n denotes the nth power of u in the algebra
V . The map V : f �→ u � f on L1(I) is the Volterra operator, discussed in
later chapters.

1.6 Additional notes

1. By an algebra A, we always mean a linear space over C together with
a multiplication such that a(bc) = (ab)c, a(b + c) = ab + ac, (a + b)c =
ac + bc, and α(ab) = (αa)b = a(αb) for a, b, c ∈ A and α ∈ C. The alge-
bra has an identity eA if eAa = aeA = a (a ∈ A). Suppose that A does not
have an identity. Then A# = C � A is a unital algebra for the product

(α, a)(β, b) = (αβ, αb + βa + ab) (α, β ∈ C, a, b ∈ A) ;

if A is a Banach algebra, then so is A# for the norm ‖(α, a)‖ = |α| + ‖a‖.
2. For f ∈ C

S , define f (s) = f (s), the complex conjugate of f (s). Then the
map f �→ f is an involution on C

S and on C(�). Check that | f |2� = | f f |�
in the latter case. The algebra C(�) with this involution is the canonical
example of a commutative, unital C∗-algebra; see §3.5.

3. Let � be a locally compact space (e.g., R). For a continuous function f on
�, supp f , the support of f , is the closure of the set {x ∈ � : f (x) �= 0}. We
write C00(�) for the algebra of functions of compact support, and C0(�) for
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the algebra of functions f that vanish at infinity, i.e., {x ∈ � : | f (x)| ≥ ε}
is compact for each ε > 0. Check that (C0(�), | · |�) is a Banach algebra. Is
(C00(�), | · |�) also a Banach algebra? Is it dense in (C0(�), | · |�)?

4. A closed, unital subalgebra A of an algebra (C(�), | · |�) such that, for
each x, y ∈ � with x �= y there exists f ∈ A with f (x) �= f (y), is called a
uniform algebra.

5. In the text, we defined � 1(G) for a group G. Check that the construction
(with the product being defined in (1.2.1)) also works for a semigroup S
instead of G – save that � 1(S) is unital only if S has an identity.

6. There is a common generalization of L1(R) and � 1(G). Each locally compact
group G has a left Haar measure m, and L1(G), consisting of measurable
functions f on G with

‖ f ‖1 =
∫

G
| f (t)| dm(t) < ∞ ,

becomes a Banach algebra for the product

( f � g)(t) =
∫

G
f (s)g(s−1t) dm(s) .

This is the group algebra of G. Note that G need not be abelian. See Part II
7. There is no norm ‖ · ‖ on H (U ) such that (H (U ), ‖ · ‖) is a Banach algebra:

see Dales (2000, 5.2.33(ii)).
8. Most of the above is in Rudin (1973, 10.1–10.7) and Rudin (1996, 18.1–18.4).

For uniform algebras, including the disc algebra A(D), see Gamelin (1969).
The disc algebra is utilized in Part III, Theorem 14.12. All the examples are
given in substantial detail in Dales (2000). See, for example, Dales (2000,
§2.1). Uniform algebras and group algebras are discussed in §4.3 and §3.3
of Dales (2000), respectively. The group algebras L 1(G) are a main topic of
Part II of this book; for the related measure algebra M(G), see Proposition
9.1.2. For the theory of topological algebras, including Fréchet algebras, see
Dales (2000, §2.2).




